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I.  INTRODUCTION 

Within the past two decades the response of materials to high 
velocity impact has been examined by experimental techniques employing 
foil resistance gages for strain measurements.  Early work by Bluhm, 
Arajs , and Lascher, Henderson, and Maynard  Gmployed a reverse bal- 
listic technique wherein plates were impacted against stationary pro- 
jectiles instrumented with strain gages of various types.  However, 
this technique limited tests to low density targets and to low impact 
velocities.  Recently G. E. Hauver  developed a forward ballistic 
technique wherein a long rod, instrumented with several stages of 
strain gages, was impacted against a stationary target at velocities 

greater than 1000 meters per second.  The measurements from tests 

employing the forward ballistic technique were ultimately intended to 

serve as a comparison with predictions from a computer code, to pro- 

vide input data of material parameters for more exact computations, 
and to improve the simulation of the penetration process. 

This paper complements the work of Mr. Hauver by taking one of his 
test conditions and performing a numerical simulation of the instru- 
mented long rod impacting a hard target at an ordnance velocity. 

II.  NUMERICAL METHODS 

The first method employed a finite element formulation in the two- 
dimensional Lagrangian code, EPIC-2, developed by Dr. Gordon Johnson5 

of Honeywell.  The second method used a finite difference scheme in 
the two-dimensional Eulerian code, HELP, developed by L. J. Hageman 
et al.6, at Systems, Science and Software. 

Bluhm, J. I., "Stresses in Projectiles During Penetration", Proc. Soc. 
Exptl. Stress Anal., Vol 13, pp. 167-181, 1956. 
Arajs, V., "An Investigation of Forces on a Projectile.During Perforation 
of Thin Aluminum Plates", Masters Thesis, Air Force Inst. Tech., 1971 
Lascher, F. R., Henderson, D., and Maynard, D., "Determination of 
Penetration Forcing Function Data for Impact Fuzes - Phase II", 
Technical Report AVSD-0306-75-RR, AVCO Systems Division, Wilmington, MA, 
1975 

Hauver, G. E., "Penetration with Instrumented Rods", Proc. 14th Meet. Soc. 
Eng. Science, pp. 106-109, November 1977. 
Johnson, G. R., "Analysis of Elastic-Plastic Impact Involving Severe 
Distortions", Journal of Applied Mechanics, Vol  98, No. 3, September 
1976 

6Hageman, L. J., Wilkins, D. E., Sedgewick, R. T. and Waddell, J. L., "HELP: 
A Multi-material Eulerian Program for Compressible Fluid and Elastic-Plastic 
Flows in Two Space Dimensions and Time", Systems, Science and Software, 
SSS-R-75-2654, July 1975. 
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The EPIC-2 code performs Elastic-Plastic Impact Computations in 
two dimensions for axisymmetric and plain strain problems.  It also is 
capable of handling axisymmetric problems with spin.  It is based on a 
Lagrangian finite element, lumped mass formulation.  The equations of 
motion are integrated directly, rather than through the traditional 
stiffness matrix approach.  Nonlinear material strength and compres- 
sibility effects are included to account for elastic-plastic flow and 
wave propagation.  The code has material descriptions which include 
strain hardening, strain rate effects, thermal softening and failure. 
Mesh generators are included to produce quickly configurations such 
as flat plates, spheres, and rods with blunt, ogival, or conical nose 
shapes.  Complex shapes can also be represented simply by providing an 
adequate assemblage of elements to represent the desired geometry.  The 
elements are triangular in shape and are well suited to represent severe 
distortions generally occuring during high velocity impact. 

Material failure is currently dependent on the equivalent plastic 
strain and the volumetric strain.  The equivalent plastic strain, Tp, 
is obtained by integrating the equivalent strain rate, £  with respect 
to time during plastic flow such that 

c (t+ At)=e (t)+e (t)At 
P        P    P 

where At is the integration time increment.  The volumetric strain e  is 
obtained by observing the current and initial volume of the element 
in the following manner 

ev = v/vo " 1 

When the failure criterion has been met for these two strains the equi- 
valent tensile stress is set to zero, and no tensile or shear stress is 
allowed to develop in the failed element.  The net result is that the 
failed element acts like a liquid inasmuch as it can develop hydrostatic 
compression with no shear or tensile stress.  Another option is available 
wherein the element fails totally and all stresses and pressures are set 
equal to zero. 

The HELP code is a multimaterial Eulerian computer program dealing 
with compressible fluids and elastic-plastic flows in two space dimen- 
sions and time.  Although the code is basically Eulerian, free surfaces 
and material interfaces are located in a Lagrangian fashion throughout 
the computational grid.  No material diffusion is permitted across these 
discrete interfaces. 

The material model employed in HELP consists of an equation of state, 
a deviatoric constitutive relationship, a yield criterion and a failure 
criterion for each of the material packages employed in the calculation. 

Material failure in HELP is governed by the failure criterion.  A 
material is said to have failed when the material tension falls below 
a critical value indicated by (p/p ) w. •  When this occurs 

o  Mm 



all the deviatoric stresses in the cell are zeroed out 

III.  NORMAL IMPACT SIMULATION 

The projectile-target configuration selected for the simulation is 
similar to that used by Mr. Hauver7 in the experimental phase.  A schematic 
drawing of the experimental setup is shown in Figure 1.  The projectile, 
an S7 steel rod, 254mm long, 8.1mm in diameter, with a hemispherical 
nose impacts the target at 0° obliquity at a striking velocity of 1000 m/s. 
The target is rolled homogenous armor, 101.6mm in diameter and 25.4mm 
thick.  Type EP high elongation foil gages, manufactured by Micro- 
Measurements, Inc, were located at 20mm, 40mm, and 60mm distances from 

the nose of the projectile. 

In the EPIC-2 code the rod portion of the projectile is configured 
on an axisymmetric mesh, shown in Figure 2, consisting of six columns 
of triangular elements while the nose is segmented into six hemispheric 
layers of elements.  749 nodes and 1272 elements are required to model 
the projectile.  The target is configured to have uniform elements about 
the impact point and increasing in size in both radial and axial 
directions so that 1050 nodes and 1972 elements are needed to model the 
target.  The strain calculations were made by computing the change in 
length of the surface element at the desired gage location. 

In the HELP code the computational mesh contained 86 cells in the 
axial direction and 32 cells in the radial direction, however, the rod 
was represented by 8 rows of cells in the radial direction.  At the 
region of impact the cells had an aspect ratio of 1 and increased in 
both directions in order to encompass the entire projectile-target 
configuration.  The strain computations at the desired locations were 
computed by observing the change in adjoining massless passive Lagrangian 
tracer particles located just within the cylindrical surface. 

IV.  MATERIAL PROPERTIES 

The material properties for the computations were obtained from 
the Solid Mechanics Branch of the Laboratory. These properties are 

shown in Table 1. 

Hauver, G. E., "Penetration with Instrumented Rods", International J. of 
Engng. Sci., Vol 16, pp. 871-877, 1978. 
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Figure 2.  EPIC-2 Computational Mesh for Strain-Time Measurements 
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Table I.  Material Properties 

Material c 

(GPa) 

S7 steel 206.8 

RHA 206.8 

V a 
y 

0 
Ll 

P 

(GPa) (GPa) (Mg/m3) 

0.3 1.44 2.68 7.8 

0.3 0.96 1.14 7.8 

e elastic modulus a  - ultimate strength 

v  - Poisson's ratio P  - density 

a  - yield strength 

Dynamic and quasi-static tests were run to determine the elastic 
modulus and yield strength7.  The results for S7 steel are shown in 
Figure 3.  The ultimate strength was taken from data derived by Bell8. 

In EPIC-2 the failure criterion was considered for two cases.  In 
the first case failure was not allowed to occur in the projectile or 
target.  For the second case only failure in the projectile was permitted 
in shear at a true strain of 40% and total failure at a true strain of 
100%.  These values for strain to failure were extrapolated from data for 
S7 steel obtained from Oak Ridge by Dr. E. W. Bloore9.  The data indicated 
elongation at failure of 9.4 to 10.5% at a strain rate of 0.033 m/m/s 
and 20 to 22% at a strain rate of 280.0 m/m/s. 

The failure criterion in the HELP code was based upon a minimum 
allowable density ratio defined as: 

o  Mm = - —  +  1 , 
K. 

where K is the bulk modulus and S is the material spallation threshold. 
The values of the minimum density ratio for S7 steel and RHA were .972 
and .986 respectively. 

eBell, J. F., "Theoretical and Experimental Studies of Shock Waves in 
Solids", Progress Report, Contract DAAD05-76-C-0722, BRL, APG, MD, May 1977 

9Bloore, E. W., private communication. 
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Figure 3.  Dynamic and Quasi-Static Relations between Stress and Strain 
for S-7 Steel (UNIVAR) 
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V.  RESULTS 

The results from the computations and their comparison with the 
experimental values for surface strains at the 20mm position are shown 
in Figures 4 and 5.  Figure 4 provides details of the elastic response 
portion of the strain-time record.  Although there appears to be good 
agreement, the HELP calculation is greater and the EPIC calculations 
are less than the experimental value.  However, at 8 microseconds, 
plastic deformation sets in and becomes the dominant feature.  The 
strain in the EPIC-2 without failure calculation rises to a very high 
value while the other calculations remain at relatively low strains. 
The deviation becomes very dramatic, increasing rapidly to 47% strain 
by 20 microseconds.  On the other hand the computations with penetrator 
failure in both HELP and EPIC-2 show good agreement until 18 micro- 
seconds.  At this time the HELP code encounters difficulty in handling 
mixed cells and the strain deviates sharply, similar to the calculations 
without failure.  Similar results occur at the 40 and 60mm gage positions. 

The oscillation in the elastic portion of the strain-time record 
is due to reverberation of the tensile wave within the rod.  This is 
demonstrated in Figure 6 which shows the computed radial velocity from 
EPIC-2 of a point on the surface of the projectile at the 20mm position 
as a function of time.  On impact, two compressive stress waves are pro- 
pagated.  One moves up the rod, the other into the target.  But at the same 
time, the intense stress in the rod is mitigated by tensile relief waves 
emanating from the lateral free surfaces of the rod.  The rarefaction waves 
cross at the rod centerline and induce large tensile fields there.  Such 
behavior has been previously noted by Wilkins and Guinan10 and by Mescall 
and Paplrno11 who have plotted elegant and illustrative contours of tensile 
stress in rods at very early times after impact.  After several wave rever- 
berations, the state of stress in the rod becomes quite complex and does 
not lend itself to simple representation.  But this figure clearly shows 
the presence of tensile waves.  The state of stress in the rod is two- 
dimensional and the smooth waveforms predicted by one-dimensional wave 
propagation theories should not be expected.  It is worth noting that 
for very high-strength materials, such tensile waves can initiate fracture 
at the rod centerline; a phenomenon not explained by one-dimensional 
theories.  Clearly, there is a tradeoff between high strength and 
ductility in long rod penetrator design. 

10Wilkins, M. L., and Guinan, M. W., "Impact of Cylinders on a Rigid 
Boundary", Journal of Applied Physics, Vol 44, No. 3, pp. 1200-1206, 
March 1973. 

^Mescall, J., and Papirno, R., "Spallation in Cylinder-Plate Impact", 
Experimental Mechanics, Vol 14, No. 7, July 1974. 
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Typical deformation profiles for both EPIC-2 computations are 
shown in Figure 7.  For the case with no failure all the elements 

are shown in the plot, and the usual erosion pattern is observed. 
However, for the case where projectile failure is allowed the elements, 
for which the tensile strain exceeds 100%, are ignored and are not 
shown in the plot.  Hence the deformation profile shows only those 
elements still capable of carrying the load.  The masses associated 
with the failed elements are nonetheless maintained in the computation. 

EPIC-2 computations were also performed for four cases of fail- 
ure condition.  When only the target was allowed to fail the computed 
surface strains differed little from those where neither the target nor the 
projectile were allowed to fail.  When both rod and target were allowed 
to fail the computed strains agreed closely with the case wherein only 
failure in the penetrator was permitted.  Surface strains therefore 
are very much functions of penetrator deformation and failure modes and 
are little affected by details of target failure for this particular impact 
condition. 

A typical deformation profile for the HELP computation is shown 
in Figure 8.  Here the profile includes the failed elements and there- 
fore introduces greater strain values than expected.  It also shows 
significant acceleration of both materials at the projectile - target 
interface in a radial direction forming "ejecta" material at the inter- 
face.  The absence of a smooth flow pattern is indicative of free 
surface tracer instability resulting in mixed cell problems and of the 
need for manually rezoning the projectile-target interface region. 

VI.  CONCLUSIONS 

Numerical techniques exist for calculating the response of pro- 
jectiles during the penetration and perforation of targets of finite 
thickness for impacts in the ordnance impact regime.  The analysis 
of ballistic impact conditions and related phenomena can now be con- 
ducted through simulation techniques such as demonstrated by the 
EPIC-2 and the HELP codes. 

It should be emphasized that computer codes such as those 
discussed here have advanced to the point where they can be used in 
conjunction with experimental procedures to advance the state-of-the- 
art in penetrator and armor design and effectiveness studies as well 
as armored systems vulnerability analyses.  For the specific problems 
considered here the following conclusions can be drawn: 

a.  Appropriate material failure models are essential for accurate 
prediction of penetrator response. 
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b. Significant tensile stresses occur in the rod at early times 
after impact and are responsible for the oscillations in the elastic 
portion of both the experimental and computational strain-time records. 
It should be noted that for high strength materials with low ductility 
such tensile waves can cause failure along the penetrator centerline. 

c. Surface strains in the penetrator are most strongly affected 

by failure of penetrator material at the rod-target interface and only 

marginally by failure of target material. 

d. The Lagrangian method used in EPIC offers a better treatment 
for strain hardening and history dependent failure than is possible 
with Eulerian methods. 

e. The Lagrangian calculation allows better resolution with less 
computer time; but because of the large amount of material distortion 
some elements at the interface can cause numerical instability which 
must be avoided by taking the affected cells out of the computational 
cycle. 

f. The code predictions appear satisfactory during the initial 
elastic phase of the deformation but deteriorate significantly for 
the HELP code at longer time period due to severe plastic deformation 
of the nose and due to the limitations of plastic material modeling. 

g. HELP code does not appear to be ideally suited for solving 
problems involving hemispherical-nosed projectiles with large length- 
to-diameter ratios and problems where the response is very sensitive 
to the failure properties of the penetrator material.  However, the code 
may be useful for extremely high velocity impact problems where hydrostatic 
compression is significant. 

Since very high plastic strains are encountered under ballistic 
impact conditions (up to 607„ computed, 15% measured prior to gage 
failure), dynamic characterization of candidate materials for ballistic 
applications should be conducted at high strain rates (IC^-IO1* mm/mm/s) 
for very high strains.  With the ready availability of two- and three- 
dimensional codes for studying penetration and perforation phenomena 
characterization under biaxial and triaxial loading conditions is 
imperative. 

21 
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